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Theoretical analysis of opening-up vesicles with single and two holes
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Cuplike lipid vesicles with a single hole and tubelike vesicles with two holes were theoretically analyzed by
taking into account the line tension of membrane holes and the bending energy of membranes, using the area
difference elasticity model. We numerically solved the Euler-Lagrange equation and the boundary conditions
holding on the membrane edge to obtain axisymmetric vesicle shapes that minimize the total energy. The
numerical results showed that when the line tension is very low, and for appropriate values of the relaxed area
difference between the two monolayers of bilayer membranes, the model yields cup-, tube-, and funnel-shaped
vesicles that closely resemble previously observed shapes of opening-up vesicles with additive guest molecules
such as the protein talin and some detergents. This strongly suggests that these additive molecules greatly
reduce the line tension of lipid membranes. The effect of the Gaussian bending modulus on the shape of the
opening-up vesicles was also evaluated and the effect is greatest when the size of hole is small.
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I. INTRODUCTION under the excess of inner press{®¢ However, this model
Lipid bilayer membranes have been studied extensivelfa” only explain the transient holes, because the Ieaking out
due to their importance in many areas such as biomer@f water through the holes may reduce the pressure differ-
branes, the food industry, drug delivery, and so on. Usually®Nc€ across the membrari@€). In other e>_(ample pf hol_es,
lipid bilayer membranes of single lipid components form electric field and charges play an essential role in their sta-

closed vesicles in aqueous solution with appropriate bounoggi;ﬁn[]lelg'aH\‘/)(‘e"r’eVSernr’arl?ﬁi?gC:eéﬁ;g Err:izzelﬁerr]i?:\;? rg\irrft:?zlalr{e
ary and initial cpnditiqnireviews in[1)). Since exposure Of. nd the modelyis not applicapble to large pdeformations:. For ’
the hydrophobic portion of the sheets to water creates h'gﬁm cuplike vesicle formation of lipid and talin systems, Su-

energy costs, no tears or holes were _usually f‘?m."'ed n th‘(g-.zaki and others clarified the origin of the shape change of
lipid _memprane. To kee_p a closed vesple fqrm IS Im'.Oortamcuplike vesicle using the adsorption isotherm of talin be-
for biological cglls, particularly for physiological functlons.. tween the periphery of the cuplike vesicle and the aqueous
Recent studies have shown, however, that some chemicghyent [12]. However, the vesicle shape was estimated
agents such as the submembranous protein [t2]ior deter- qualitatively as a partial sphere.
gents[3] are Capable of inducing a stable hole or holes in In this paper, we Study the Shape of the Opening_up mem-
lipid membranes so that the membranes transform into cumbranes, based on the idea of bending energy, which was first
shaped vesicles, tubelike shapes, or lipid bilayer sheets. Aproposed by Helfrici13] and has been successfully used for
though a precise mechanism has not yet been clarified, melixplaining the shape transformations of closed vesidgs
tin (a bee toxin causes hemolysis, and therefore the additiorMembranes are assumed to have bending energy determined
of melittin may make a hole in lipid bilayer membraries. by the local curvatures of the surfaces. We also incorporated
Here we investigate theoretically how these shapes arthe nonlocal bending energy resulting from the elasticity of
formed based on the principle of energy minimization. the area difference between the two monolayers of bilayer
The opening of a hole in a lipid membrane to elucidatemembrane$14]. By applying the variational method to the
the physical properties of biological membranes or to utilizetotal energy that comprises the local and nonlocal bending
lipid vesicles as carriers for drug or DNA delivery has energies and the line tension energy, we can derive the Euler-
proven to be a challenging task. A variety of physical tech-Lagrange equation for the membrane shape and the boundary
niques, such as electroporatiffs], osmotic shocK6], opti-  conditions holding on the membrane edge. Recently, Tu and
cal tweezerg7], and adhesiof8], have been developed to Ou-Yang[15] derived the shape equation and boundary con-
open transient holes in membranes. These holes have beditions for the spontaneous curvature model. We apply these
interpreted as the result of a mechanical balance between tlguations to our model. By assuming axisymmetric deforma-
membrane tension and the line tension, the free energy cosbns, we numerically solve the equations to seek out the
per unit length of the edges of the holes. By taking the lineequilibrium shapes. The results show that the shapes ob-
tension energy on a small, circular hole in a spherical vesicleserved in experiments are realized when the line tension and
one can show that a quasistable hole opens in the membrattee relaxed area difference are appropriately chosen.
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F,= J yds, (4)
s
wherey is the line tension andsthe line element alongs.

B. Shape equation and boundary conditions

The equilibrium shape of the surface is obtained by
minimizing F for fixed areaA=[[ydA. If the length is
normalized withR,=(A/4m)'2, the nondimensional energy
F=F/k. becomes
FIG. 1. The orientations of an opening-up surface and the

imeter. - . k .

perimeter FZJJ [2H2+kgK]dA+Er(m—fTb)2+J yds, (5)
b )
Il. MODEL
where
A. Free energy

We represent an opening-up vesicle as a two-dimensional m= f J HdA (6)

surface, bordered by a closed curv@r curves 4%. To s

choose the direction, we take the inward normal to the mem-
brane as positive. The perimet¥. is oriented in the direc- and
tion of the right-hand fingers if the thumb of the right hand

indicates the positive norméFig. ). kg=kg/ke, ki =kik,
The energy of the membrane is the sum of three terms
F=F.+F+F,, the local bending energy of the membrane . AA,
(Fo), the nonlocal bending energy of the membréfg, and Y= Rk, mo= ﬁ (7)
the line tension energy stored on the boundaxyF,). The
local bending energy is written as The surface area is now fixed atrd4and there are four inde-
k. pendent parameteks, k;, y, andmy in the model.
F.= f f [—(2H)2+ kgK}dA, (1) The shape equation and the boundary conditions for
sl 2 opening-up vesicles are derived from the variation

where dA is the area element on the surface, aHd
=(1/2(1/R;+1/R,) and K=1/R;R, are the mean and
Gaussian curvature@®}; and R, are the principal curvature where\ is the Lagrange multiplier. Equatid8) leads to the
radii) [13]. The sign of the mean curvature is positive whenfollowing Euler-Lagrange equation holding on the surface:
vesicles assume a spherical surface. The local bending
modulusk, and the Gaussian bending modukisdescribe AH +2H(H? - K) + ccK - \H =0, 9)
the elastic properties of the membrane. The spontaneous cur—h .
vature of the membrane is zero, because the two sides of ereA represents the Laplace-BeItraml operator on the sur-
opening-up membrane are chemically identical. ace andc is a constant given by

The nonlocal bending energy

8G = 8(F +\A) =0, (8)

Co= (k/2)(mp—m). (10)

= %é(AA— AAg)? (2 This equation is the same shape equation for closed vesicles
obtained by Ou-Yang and Helfridii7] for the spontaneous

stems from the relative surface dilation of the two monolay-curvature model except that no pressure term is involved.

ers[14]. The area difference between the two monolayersThe constant, corresponds to the spontaneous curvature of

F,

AA=AM-AN s given by the spontaneous curvature model.
The boundary conditions for E¢Q) are also derived from
AA = ZDJ f H dA, 3) Eq. (8) using the method described fih5]. We introduce a
s local orthogonal framét,s) on the surface along the bound-

, _ ary d% such thats is alongds, (Fig. 1). The boundary con-
whereD is the distance between the two monolayers. Thejitions ongs are then

corresponding relaxed valudA,=A5S"-A] is determined

by the numbers of lipid molecules constituting the layers. 2H _CO+&gC -0 (12)

The constantk, is the nonlocal bending modulus, whose now

value can be estimated to be of the same order as the local

bending modulusk, [16]. 2@ + kgd_T +5c,=0, (12)
Finally, the line tension enerdy, is given by ot
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FIG. 2. The deformation of an opening-up surface whgd==0.4.(a) Energies of equilibrium shapes with one héelid line) and
with two holes(dashed lingas functions of the normalized line tensipr yR,/k.. Dotted line represents the energy of a sphere that has the
same area. The figure also shows typical shapes of the surface with oréH6l€,5.0,7.82and the surface with two holé$=5.0). (b)
Magnification of(a) in the neighborhood o§=7.8. Only the energy of the surface with one hole is shown.

_ r P sphere aty=7.28, in which an infinitesimal hole opens in a
2H(H = Co) + kR + 1 +74=0, (13 spherical surface. The graph of energy versus line tension
wherec, is the normal curvatureg, the geodesic curvature, folds aty=7.22 and 8.04 so that there are three branches in
and 7 the geodesic torsion along. Physically, Eqs(11)  the graph: 7.2& y=<7.28, 7.22< y<8.04, and 6< y<8.04.
and(12) correspond to the balance of torque and the balancghapes in the third branch vary from a cup shape to a dish
of shear force per unit length of the boundary, respectivelyshape, and they have lower energy than the shapes in the
Equation (13) is associated with membrane tension. Noteother branches at the samje Moreover, they have lower
that the parameter andk, are involved only in the bound- energy than the sphere whén<7.82. Therefore, a spherical
ary conditions. vesicle is expected to transform discontinuously into a cup
The equilibrium shape of opening-up vesicles is obtainedshape afy=7.82. After that, the cup continuously changes its
by solving Eq.(9) with the boundary conditioné11)—(13)  shape to become a dish gslecreases.
and the constraint€l0) and A=4r.

C. Surface with two holes
Il. RESULTS N , ,
In addition to the cup shapes, there exists another family

A. Axisymmetric deformation of solutions in which two holes open at both ends of a sur-

We hereafter restrict our analysis to axisymmetric deforface. Whenmy/47=0.4, the shapes have higher energy than
mation. There are three topological types of axisymmetri¢he cup shapes as shown in Figa)2 which suggests that the
surfaces: closed surfaces, surfaces with one hole, and sigbapes with two holes are unstable. However, wimgmr
faces with two holes. Shape transformations of closed 1.0, the energy becomes lower than that of the cup shapes
vesicles have been thoroughly studied and it is known thatFig. 3. Shapes with two holes bifurcate from a sphere at
the shape depends on the volume of water enveloped in the
vesicles[18]. However, in the case of no volume constraint
(in other words, no pressure texnspherical vesicles are
stable ifcy=(k,/2)(m0—4s) <6 [13]. Thus, we may assume
that closed surfaces are spherical in this range. The shape
equations and the boundary conditions for axisymmetric sur-
faces with holes are described in Appendix A. The equations
were solved using the method described in Appendix B. Al-
though there are four independent parameters in the model,

as stated previously, we fixdd at 1.4 according to the esti-
mation for stearoyl-oleoyl-phosphatidylcholif€OPQ by

Miao et al. [14]. Furthermore, we assunig=0 in the fol-
lowing three subsections. In Sec. lll E, we examine the effect
of the Gaussian curvature modulus on the vesicle shape. Fi-
nally, we describe the result of a minimal model in which the
nonlocal bending energy is completely relaxed. FIG. 3. The deformation of opening-up surfaces when
mo/47=1.0. Energies of equilibrium shapes with one h@elid
line) and with two holegdashed ling are shown against the nor-
malized line tensiory=yRy/k.. Typical shapes of the surface with

Figure 2 shows the deformation of opening-up surfacesne hole(3=0.9 and the surface with two hol€$=0.0,0.8,1.5
when my/47=0.4. Shapes with one hole bifurcate from a are depicted.
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B. Surface with one hole
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() FIG. 5. Phase diagram of opening-up surfaceskierl.4 and

ky=0. The shape of the lowest energy for givepand? is shown.

\/ U O, sphere;T, tube; F, funnel; andC, cup. In domainD, no cup
0.0 0.93

shape was found. Dashed lines represent the region of bistability

< > () O O O between a cup and a sphere.

also depend omm,. In particular, for my/47>1.23 no
opening-up shape was found. The critiog corresponds to

FIG. 4. The deformation of opening-up surfaces winajidr  Co=(k;/2)(my—4m)=2.0 for the sphere, suggesting that
=0.72.(a) Relative energies of tube and funnel to cup shapes as<2 is a condition for a spherical membrane to open holes.
functions ofy. Solid line representéFpe—Feyp /8mk: and dotted  Within the rangemy/47w<1.23, largemy tends to stabilize
line shows(Frynne~ Feup)/87k;. (D) Stable shapes at the indicated tube shapes, whereas smailj is favorable for cup shapes.
values ofy. Funnel shapes are realized for intermediatg In the cup-

shape region, there is a small dom&where no cup shape
¥=2.0, in which two infinitesimal holes open in a sphericalwas found. What shapes are realized in this region is un-
surface. Asy decreases, the holes expand and the entir&nown, for nonaxisymmetric shapes may exist. The transi-
shape becomes a short tube. The energy—line-tension gragihn between the sphere and the tube shapes is continuous,
does not fold and the energy is always lower than that of avhile it is discontinuous between the sphere and the cup
sphere for < ¥< 2.0. Therefore, a continuous transition be- shapes. Numerical calculation showed that the continuous
tween the sphere and the tube occur§=ag.o. transition occurs ay=2-c,.

In the case of the intermediate valuesngf, the energies Opening-up shapes with=0 have a striking feature.
of cups and tubes become very close, and the third type afvheny=0 andﬁg:O, all the surfaces satisfyirg=c,/2 are
shape emerges, in which the two holes of a tube have diffethe solution of Eq(9) and the boundary conditiori$1)—(13)
ent sizes. We call this shape a funnel. Whegt47=0.72,  if \=c,?/2. From Egs.(6) and (10), c, is given by c,
the shape of the lowest energy turns out to be a cup, a tubg,&r%/z(lJerr)_ The shapes depicted in Figs. 1-33a0

or a funnel according toy (Fig. 4. The funnel bifurcates are examples of such surfaces. Even in the axisymmetric

from the tubeAafy:1.79 and thAe two holes decrease their S1Z€ase, there exist an infinite number of shapes for a given
unequally asy increases. Aty=3.5, one of the holes be-

constant mean curvature. In addition, there also exist an in-

comes very sr_nall and the entire shape is like a cup. Then.thﬁnite number of nonaxisymmetric shapes, and, furthermore,
other hole shrinks and the shape transforms to a tube again at

%=4.11. Although funnel shapes also emerge for e31 2!l these surfaces have the same eneFrgk,mQZIZ(lﬂTkr). _
<0.80, they have higher energy than the cups and the tubélgﬂlerefore, the surface shape cannot be uniquely determined
with the samey. This suggests that the funnel is unstable andVheny=0. In that case, membranes are expected to be very
that stable cups and tubes coexist in this region. flexible and their shape fluctuates thermally.

E. The effect of the Gaussian bending modulus

1.79 210 350 411 446

D. Phase diagram The equilibrium shape of closed vesicles is considered to

To obtain the phase diagram for opening-up surfaces, wbe independent of the Gaussian curvature modijuse-
compared the enerdy of the cup, tube, funnel, and sphere. cause the surface integral of the Gaussian curvafutes
Figure 5 shows the shape of the lowest energy for givgn the same constant value for any closed surface of the same
and y. Note that this diagram is incomplete, because theopology. For an opening-up vesicle, on the other hand, the
nonaxisymmetric shape is not taken into consideration.  surface integral oK depends on the surface shape in general,

In general, opening-up shapes emerge wheare small, and the equilibrium shape may be affected by the Gaussian
but the conditions for hole openings and membrane shapesurvature modulus.
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FIG. 6. Schematic diagram of the shape of a small hole opening
in a nearly spherical surface. The shape of the rim varies according

to k.
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FIG. 7. Shape transformations of vesicles predicted by the mini-

. . . mal model. Energy of a sphe(dotted ling or that of a diskKdashed
Numerical calculations showed thigf has little effect on line) is lower than the energy of cup shageslid line).

the surface shape when holes largely open in the surface.
However, if the hole size is small the surface shape is greatly ) A

affected byk, (Fig. 6). Whenk, <0, the surface is relatively CYP finally becomes a disk gt=2.89. Cup shapes on the
flat in the vicinity of the hole. As the hole size reduces, thelOWer branch have lower energy than the sphere, which sug-
surface closes smoothly and the nondimensional line tensio®€StS that they are locally stable. However, their energy is

y shrinks to zero. On the other hand, whe=0 the mem- much higher than that of a disk. Although equilibrium sur-
brane around the hole is protruded to form a volcanolikd@c€S With two holes also exigtot shown, they have higher

shape. As the hole size decreases, the volcano becomB2€rdy than the disk as well. Therefore, spherical vesicles are
smaller but steeper. In the limit of the infinitesimal hole, the€XPected to transform discontinuously to a disk-shaped

surface becomes parallel to the axis of rotation at the lip ogq,elinsrane sheet V‘;]hé“ dehcAre_ases beIo;N 2. Co?t:/erszely, a
the volcano, andy converges to 2e,=2-(k./2)(my—4m). ISk becomes a sphere whenncreases fo more than <.

When k,>0, the surface is more protruded and the lip is
curled up. The hole never closes because the neck is infini- IV. EXPERIMENTALLY OBSERVED SHAPES

tesir_nally narrowed before the. lip is sealed. Similar Fransfor- The observation by Saitott al.[2] showed that the pro-
mations of the hole shape with nonzekpare seen in the e ta)in induces opening-up vesicles with both one hole and
surfaces with two holes. , _multiple holes(Fig. 8). As to the vesicles with single hole,
These results indicate that if small holes are found inpe transition to the cup shape seemed to be discontinuous
vesicles, we may evaluate the vall@ at least the signof  gjy0e o intermediate shape between the cup and the sphere
the Gaussian bending modulus by observing the hole shapg..< tound. Once a hole opened, the vesicle shape largely
Although one of the authors predicted a small value of thgjgpended on the concentration of talin. Though cup-shaped
Gaussian bending modulus for liquid membrafes], the  \egicles were observed at low concentration, the hole size
precise observation of the opening-up vesicle will clarify theyocame larger with increasing concentration and the cups

validity of the theory. transformed into a dish shapEigs. §a)—8(c)]. Conversely,

actual area differenc&A which is determined by the vesicle
shape. To investigate this effect, we calculated the vesicle
shape using a minimal model in which the nonlocal bending
energy is completely relaxed.

Figure 7 shows the shape change of opening-up vesicle
whenAAy;=AA andky=0. In this case, a disk with the radius

Z.RO is always a solution Of Eq9) Wlth the boundary condi- FIG. 8. Opening-up vesicles observed by dark-field microscopy
tions. Th_e e”efg,y of the dls(l47TR02’) is smaller than th&_lt of in the presence of talifphotographs are taken from Figs. 1, 3, and
a sp_)herlcal vesiclg8mk;) when ?’_<2- The energy—line- 4 in sajtohet al. [2]). (8—(c) A sequence of photographs showing
tension graph of cup-shaped solutions has two branches. Qforphological changes of a vesicle at talin concentrations vary
the lower branch, cup shapes bifurcate from a spherg at from 0 to 2 uM. (d) A vesicle with two holes observed in the pres-
=2.00 and the hole expands gsdecreases to 1.52. On the ence of 1uM talin. (e) A vesicle with three holes observed in the
upper branch, the size of the hole increases withnd the  presence of 1.%M talin. (Bar=5um.)

F. Membranes without nonlocal bending energy A B C
So far, we have assumed the relaxed area differamge
to be fixed. However, when a membrane has a hole, the !
lipids may possibly migrate across the edge of the hole from
one monolayer to the other. Th&r®, will be adapted to the
D

E

”

e —_——
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diluting the talin caused the cup-shaped membranes to tranptace after the opening up of a hdl&|. A greater reduction
form into the original spherical vesicles. These observationsf the area of the outer leaflet by detergents may produce a
well agree with the result shown in Fig. 2, since the effectivenegative my, causing an inverse rapid bend of the mem-
line tension depends on the talin concentratidg]. When  pranes.
the talin concentration was further increased, the vesicles \We now give a rough estimation of the line tension for
became a flexible sheet whose shape fluctuated greatly. Thyening-up vesicles. Although the critical line tension for
exact morphology of sheet-shaped membranes could not hge opening depends om,, Fig. 5 indicates that opening-up
evaluated by dark-field mi_croscopy, while the theoretical rey ggjcles are formed whepis smaller than 14. Using typical
sults suggest a surface W|th.a constant mean curvature. valuesk.~ 10719 J andR,~ 1 um gives the critical line ten-
el 26 it the calcuations shoun n 9. 2 ebro0UCSon as'.<1.4 pN, whih is considerably loir than te
traditional value~10 pN [20]. Therefore, we can conclude

that the membranes maintained the valueAd. If lipids that chemical agents such as talin and detergents reduce the
could easily migrate across the hole edge from one mono; . 9 ger
ine tension by a factor of 10—%0compared with mem-

layer to the other, as stated in Sec. IlI&A, would be rap- ) - .
idly relaxed, and direct transformation would take place be_branes without additive components. There are no reliable

tween the sphere and the sheet. Talin is a high-moleculafi@@ for membranes with talin, but the line tension with de-
weight protein (200 kDa. Moreover, fluorescent tergentg has been estimated by measuring the duration time
micrographs showed that talin was localized mainly alon f transient membrane hol¢21] or the magnitudes of mem-
the membrane edgég]. Talin molecules may accumulate at orane ﬂL_Jctuat|on§22]; both est|mat|or_15 showe_d _that the line
the edges of holes and prevent the migration of ||p|ds beIQﬂSlon IS ONn the order of 01 pN ThlS Yalue is in reasonable
tween the layers. agreement with our theoretical estimation.

Opening-up vesicles with multiple holes were observed
when the concentration of talin was abruptly increased.
Funnel-shape vesicles were frequently observed and vesicles In this paper, we analyzed the shapes of opening-up
with three holes were also found with a high concentration ofvesicles by taking into account the line tension of membrane
talin [Figs. 8d) and &e)]. The fact that the opening of mul- holes and the bending energy of membranes, using the area
tiple holes required a high concentration of tafie., low y) difference elasticity model. We formulated the Euler-
corresponds with the theoretical phase diagram shown in Fid.agrange equation and the boundary conditions holding on
5. However, for some unexplained reason, only cup-shapethe membrane edge, and numerically solved them to obtain
vesicles were obtained when the talin concentration wasxisymmetric vesicle shapes that minimize the total energy.
gradually increased. Therefore, it is unclear whether the trarNumerical results showed that when the line tension is very
sition between the sphere and the multiple-hole vesicles iBw, opening-up vesicles may have lower energy than closed
continuous or not. In addition, we could not find small holesspherical ones so that large, stable holes open in the vesicles.
in the membrane to evaluate the Gaussian bending moduluslowever, the relaxed area difference between the two mono-
It is unknown why tube shapes, which are predicted for smallayers of bilayer membranes is also an important factor for
vy and largaem,, were rarely found in the experiment. Some of stabilizing the opening-up vesicles. Depending on the values
the experimental conditions may have had the effect of reef the line tension and the relaxed area difference, the model
ducing them, of membranes, or another possibility is that gives cup-, funnel-, and tube-shaped vesicles. The calculated
most of the tube shapes calculated for sma#ind largem,  shapes and the phase diagram well agree with the shape
are actually unstable for a nonaxisymmetric deformationtransformations of opening-up vesicles observed when the
and shapes having more than two holes are realized for thegeotein talin or some detergents were added, indicating that
parameters. To draw more definite conclusions, further studthe line tension of the membrane is greatly reduced by these
ies will be needed both theoretically and experimentally.  additive molecules.

Cup-shaped vesicles have also been observed when deter-We also showed that the Gaussian bending modulus af-
gents are applied3]. The observations showed that, like fects the vesicle shape when the size of the membrane hole is
vesicles with increasing talin concentration, sphericalsmall. Since the shape of closed vesicles is independent of
vesicles transformed discontinuously to a cup and themhe Gaussian bending modulus, its estimation has been con-
gradually unfolded to become a sheet. In this case, the mensidered to require the measurement of the energy change for
brane area continuously decreased due to the solubilizatiaine fusion or fission of vesicles. However, our finding may
of lipids by detergents, and the reductionyf yR,/k. with  provide another way to detect the Gaussian curvature modu-
R, may be the cause of the shape transformations. Althouglus by observing opening-up vesicles. Although our results
the area reduction rates are not always the same between thleowed that cup shapes with a small hole are mostly un-
two monolayers of opening-up vesicle®y may have re- stable, it is possible that we may find small, stable holes in
mained almost steady for a short time. In case of the trangnultiple-hole vesicles. There may be other indications be-
formations by detergents, no multiple-hole vesicles weresides the shape of small holes to distinguish the Gaussian
found. This can be understood through the reductiomgf curvature modulus. To develop a method to measure the
since the detergents may extract lipid molecules mainly fronGaussian bending modulus is an interesting task for future
the outer leaflet of the membranes and reduce the area. Biudy.
some combinations of detergents and lipid molecules, it has In the present work, we have analyzed only axisymmetric
been reported that inside-out inversion of membranes tookhapes. However, some nonaxisymmetric shapes, such as a

V. CONCLUSIONS
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vesicle with three holes, have been observed in experiments. If we multiply Eq. (A4) by r cosy, integrate it witht,
Analysis of nonaxisymmetric shapes will be a future work todivide it by r cosy, and use Eq9.A6)—(A8), we have
obtain a complete phase diagram. To evaluate the thermal

fluctuations of membranes and membrane holes is another siny

important problem. Recent studies have shown that 2H - _N 0, (A9)
opening-up vesicles are induced by proteins other than talin.

Moreover, proteins and detergents have the ability to stimuwhere

late various topological transformations of vesicles including

membrane fusioh23]. Approaches, such as used in this cur- r - sin sin
023]. App [— (y;——‘”)—cOT‘/’m]. (AL0)

rent analysis, will also be useful in obtaining a better under- N= cosy
standing of these phenomena.
Differentiating Eq.(A10) gives
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Equations(A9) and (A11) are convenient for numerical cal-

APPENDIX A: AXISYMMETRIC SHAPES culations.

We consider the case that the surf@cés an axisymmet-
ric shape. By parametrizing the surface shape with the ar- APPENDIX B: NUMERICAL METHOD
clengtht of the contour and the azimuthal angle we rep-

resent the point vector of the surface as To get precision in the numerical integration, we intro-

duce an independent variable
p(t, &) = r(t)cosi + r(t)sin ¢ + z(t)K. (A1) .
— ) /
We introduce a functioni(t) which represents the angle of T= (1/L)J0 (1+yA)2dt, (B1)
the contour.y is related tor andz by

F=cosy and z=siny, (A2) whereL is a constant determined bity)=1. To calculate

m=/sH dA and the area constrai®=4m, we define two
respectively, while the overdot denotes a derivative with refynctions

spect tot. Then the curvatures are given by

t
s Jsi )= | rdt B2
H:}<¢+sm¢>’ szlsmz,b’ a(t) Jof (B2)
2 r r
_ and
cnzw, cgzcoiﬂ, 7=0, (A3) ¢
' ' () =f Hr dt. (B3)
and the shape equatidf) becomes 0

Then from Eqgs(A2), (A3), (A9), (Al1l), (B2), and(B3), we

1d - 5
Fd_t(rH) *2HHT=K) +cpK ~AH =0. (Ad) have the following set of ordinary differential equations:

The boundary conditions &0 are WN sin
r(0)=2(0) = ¥{0) = 0, (A5) o
since the surface is smooth on thexis. At t=t,, the fol-
lowing boundary conditions follow from Eq$11)—(13) and , cosy _ sin ¢
(A3): N =¥ —N +2(2H-cy){| H-——
. Siny
2H + y— =0, (AB) siny
y=v H——r , r'=W¥cosy,
~ sin
2H - co+ koY =0, (A7) |
r Z=V¥sinyg, a'=¥r, u' =VHr, c¢,=0, L'=0,
cosw (B4
2H(H - cp) +kgK+)\+y =0. (A8)

where the prime represend$dr and
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- + i 21-1/2
W =L[1+(2H - siny/r)?] (B5) ML) = {CO i M} ND=-%  (B6)
Equationg10) and(A6)—A8) and the area constraint give
the following boundary conditions: In a case where there are two holes on the both ends of the
surface, the conditions
r(0)=2z(0) = (0) =a(0) = u(0) = 0, H(0) = { kgw], N(0) =% (B7)
R replacer(0)=0 and #(0)=0. We solved Egs(B4) with the
a(l)=2, w(1)=(my-2cy/k,)/2m, conditions(B6) or (B7) using the relaxation methd@4].
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